Segmentation of Structures for Improved Thermal Stability and Mechanical Interchangeability

John Hart (ajhart@mit.edu) B.S.E. Mechanical Engineering, University of Michigan (April 2000) S.M. Mechanical Engineering, MIT (February 2002) January 30, 2002

> Thesis Advisor: Prof. Alexander Slocum MIT Precision Engineering Research Group

Overview

PROBLEM: Structural design and component packaging of conventional microscopes makes them inadequate for nanoscale observations.

Specifically, need improvements in:

- 1. Stability.
- 2. <u>Flexibility</u>.
- 3. <u>Resolution</u>.

SOLUTION: A symmetric, segmented structure:

- Tubular modules encourage uniform thermal expansion.
- Kinematic couplings between modules enable reassembly and reconfiguration with sub-micron repeatability.

HPM Project

The High Precision Microscope (HPM) Project seeks a new microscope for advanced biological experiments [1]:

- First use examining DNA strands during protein binding.
- Goal to improve:
 - Thermal stability.
 - Reconfigurability.
 - Design of optics, positioning actuators, and positioning stages.

Work at MIT PERG during the past year to:

- 1. Design the HPM structure.
- 2. Test the structure's thermal stability and optimize through FEA.
- 3. Model kinematic coupling interchangeability.

Conventional Microscope Design

Designed for manual, one-sided clinical – not biological – examinations:

- Asymmetry of structures causes thermal tilt errors.
- Must be inverted and stacked for two-sided experiments.
- Difficult to switch optics, stages, etc.

Functional Requirements

- 1. Minimize structural sensitivity to thermal drift.
- 2. Support multiple optical paths.
- 3. Enable optics modules to be interchanged without recalibration.
- 4. Maintain stiffness close to that of a monolithic structure.
- ? In the future, accommodate:
 - Picomotor/flexure drives for the optics.
 - Multi-axis flexure stage for sample.

Segmented Structure Design

A modular tubular structure with kinematic couplings as interconnects*:

- Gaps constrain axial heat flow and relieve thermal stresses.
- Heat flows more circumferentially, making axial expansion of the stack more uniform.
- Canoe ball kinematic couplings give:
 - Little contact, high-stiffness.
 - Sliding freedom for uniform radial tube expansion.
 - Sub-micron repeatability for interchanging modules.

*Collaboration with Matt Sweetland

Heat Flow Theory

Locally apply heat to the midpoint of one side of a hollow tube:

Larger tube:

- Circular isotherms.
- Uniform radial heat flow.

• Shorter tube = axial constraint:

- Isotherms pushed circumferentially.
- Gaps have negligible contact, high resistance.

<text><equation-block><text><equation-block><equation-block><equation-block>

Finite Element Models

Sequential thermal and structural simulations (Pro/MECHANICA):

<u>Thermal</u>

- Couplings as 1" x 1" patches.
- Three 1W ¹/₂" x ¹/₂" heat sources.
- Uniform free convection loss on outside, h = 1.96.
- ? Solved for steady-state temperature distribution.

Structural

- Specify steady-state temperatures as boundary condition.
- Constrain non-sliding DOF at bottom couplings.
- ? Solved for steady-state deflections.

Experiments

Measured tilt under controlled boundary conditions for 8-hour durations*:

- Tube structure mounted between two plates and preloaded with threaded rods.
- Isolated from vibration on optics table.
- Isolated from thermal air currents using 4"wall thickness foam chamber.
- 54 3-wire platinum RTD's; 0.008° C (16-bit) resolution; +/- 1.5° C relative accuracy.
- Tilt measured using Zygo differential plane mirror interferometer (DPMI); 0.06 arcsec resolution = 72 nm drift of the objective.
- Three 1W disturbances to stack side by direct contact of copper thin-film sources.

FEA vs. Experiments

- = 0.03° C discrepancies.
- FEA tilt ~15% less than from experiments.

? Ordinally sufficient for design iteration; discrepancies from:

- Uniform *h* loss.
- Square contact modeling of couplings.
- FEA is steady-state only.

Level (1 = bottom)	DT Segmented – Simulated	DT Segmented – Measured	<i>DT</i> One-Piece – Simulated	DT One-Piece – Measured
1	0.01	0.00 ± 0.01	0.07	0.06 ± 0.01
2	0.12	0.13 ± 0.02	0.12	0.09 ± 0.02
3	0.18	0.21 ± 0.03	0.12	0.12 ± 0.01
4	0.12	0.12 ± 0.02	0.12	0.09 ± 0.02
5	0.01	0.00 ± 0.01	0.07	0.06 ± 0.01

21

Comparison (FEA):

	Tilt – point- to-point	Tilt – variance
Segmented – <i>Q</i> between couplings	0.46	0.026
Segmented – Q along couplings	0.58	0.026
One-piece	0.70	0.034

Shielding – FEA Results

Effect of shielding on tilt of a single segment: (Al inner only normalized to 1.00)

Design	Tilt [arcsec]: No Insulation	Tilt [arcsec]: ¹ /2" Insulation	Tilt [arcsec]: 1" Insulation
2" Al inner only	1.00	-	-
2" Cu inner only	0.49	-	-
2" Cu inner w/ no shield	-	0.36	0.27
2" Al inner w/ ? " Al shield	-	0.38	0.33
2" Al inner w/ ? " Cu shield	-	0.35	0.27
2" Cu inner w/ ? " Cu shield	-	0.22	0.16
2" Cu inner w/ 1/16" Cu shield	_	0.19	0.13

Cost vs. Performance

Must consider cost of segmentation + shielding, versus:

- Solid, shielded Al or Cu structure?
- Solid Invar structure (rolled plate)?
- Segmented Invar structure?

Tradeoffs:

- Functionality of segmentation cost of couplings.
- Secondary machining costs mounts for optics and stages.

		Configuration	Frame deformation due to temperature gradients [nm]			
			x-axis	y-axis	z-axis	
	a" _ noint 4	Aluminium frame with shielding	5	5	15	
	convection	Aluminium frame without shielding	100	100	300	
		Invar frame <u>with</u> shielding ——Invar frame <u>without</u> shielding	2	2	7	
	1		45	45	135	
AZA.		*Ruiji, Theo. Ultra Precision Coordinate Measuring Machine, I Thesis, Eindhoven, The Netherlands, 2001, p.66.				

Implications

Segmenting improves dynamic thermal accuracy and interchangeability:

- Best case drift = 144 nm at objective under 3x1W localized sources.
- Segmentation reduces tilt error:
 - 57% transient
 - 31% steady-state.
- Thin sheet shielding and/or insulation reduces tilt 3x-6x.
- Kinematic couplings give high gap resistance and enable precision modularity.

Next Steps:

- Improve transient analytical model.
- Transient design study and comparison to steady-state results.
- Study sensitivity to magnitude, intensity, and location of sources.
- Design, packaging and testing of flexure mounts.

References

- "Overview of the High Precision Microscope Project", University of Illinois Laboratory for Fluorescence Dynamics, 2000.
- 2. Hetnarski, Richard (ed.). Thermal Stresses, New York, NY: North-Holland, 1986.
- 3. Leinhard, John IV, and John Leinhard V. <u>A Heat Transfer Textbook</u>, Cambridge, MA: Phlogiston Press, 2001.
- 4. Ho, Y.C. "Engineering Sciences 205 Class Notes", Harvard University, 2001.
- Slocum, Alexander H. and Alkan Donmez. "Kinematic Couplings for Precision Fixturing Part 2: Experimental Determination of Repeatability and Stiffness", Precision Engineering, 10.3, July 1988.
- Mullenheld, Bernard. "Prinzips der kinematischen Kopplung als Schnittstelle zwischen Spindel und Schleifscheibe mit praktischer Erprobung im Vergleich zum Kegel-Hohlschaft" (Transl: Application of kinematic couplings to a grinding wheel interface). SM Thesis, Aachen, Germany, 1999
- Araque, Carlos, C. Kelly Harper, and Patrick Petri. "Low Cost Kinematic Couplings", MIT 2.75 Fall 2001 Project, http://psdam.mit.edu/kc.
- 8. Hart, John. "Design and Analysis of Kinematic Couplings for Modular Machine and Instrumentation Structures", SM Thesis, Massachusetts Institute of Technology, 2001.
- 9. Slocum, Alexander. <u>Precision Machine Design</u>, Dearborn, MI: Society of Manufacturing Engineers, 1992.
- 10. Ruiji, Theo. Ultra Precision Coordinate Measuring Machine, Ph.D. Thesis, Eindhoven, The Netherlands, 2001.

