

Author	Actuation	Applica-	Size	Force	Stroke
Shikida	Vertical	Valve	(<i>mm²</i>) 5 * 5	(<i>mN</i>) N/A (very small)	(µm) 220
Divoux	Vertical	Mirror	0.8 * 0.8	0.1	6
egtenberg	Lateral	N/A	0.8 * 0.5	0.02	30
Perregaux	Lateral	Optical shutter	0.5 * 0.2	N/A (very small)	20
Sherman	Lateral	Fluid control	1 * 0.2	N/A (very small)	100
his thesis	Lateral	Relay	9 * 1	2 ~ 10	80

Analytical Analysis (2)
•Assume most of the force comes from
$$s < x < x^*$$

$$\begin{cases}
F_{left} \sim \frac{1}{L-s} \cdot \int_{s}^{x^*} \frac{\Gamma}{\beta^2} \cdot [(L-s)-x] dx \sim \frac{\Gamma(x^*-s)}{\beta^2} \\
F_{right} \sim \frac{1}{L-s} \cdot \int_{s}^{x^*} p(x) \cdot (x-s) dx = \frac{\Gamma}{\beta^2} \frac{(x^*-s)^2}{L-s} \\
\beta = \overline{y}(x^*) = A \cdot (x^*-s)^3 - \frac{\Gamma}{24EI\beta^2} (x^*-s)^4 \\
F_{left} = 6EIA
\end{cases} \Rightarrow \beta \sim \frac{F_{left}}{6EI} \cdot (x^*-s)^3 - \frac{\Gamma}{24EI\beta^2} (x^*-s)^4 \\
F_{left} \sim \frac{\Gamma(x^*-s)}{\beta^2} \\
\Rightarrow (x^*-s) \sim (\frac{EI\beta^3}{\Gamma})^{1/4} \\
F_{right} \sim \frac{\Gamma}{\beta^2} \frac{(x^*-s)^2}{L-s}
\end{cases} \Rightarrow F_{right} \sim \frac{1}{L-s} \sqrt{\frac{EI\Gamma}{\beta}} \\
48$$

