An Electrothermally-Actuated Bistable MEMS Relay for Power Applications

Ph.D. Thesis Defense

Massachusetts Institute of Technology May 5, 2003, 10:05AM, Room 34-401A

Thesis Committee:

Prof. Alexander H. Slocum, chairman, research advisor,

Prof. Jeffrey H. Lang, research advisor, Prof. Martin A. Schmidt

Presentation Overview

- Device background and overview, 5 slides
- Components design and fabrication
 - 1. Bistable structure, 4 slides
 - 2. Thermal actuator, 4 slides
 - 3. Sidewall contact, 4 slides
- Conclude, 3 slides

MEMS Technology

- MEMS = MicroElectroMechanical Systems
- To build moving micro structures/systems on silicon wafer to perform some functions
- Fabrication: Etching, Thin film deposition, Photolithography, Bonding ...
- Design: Mechanical, Thermal, Electrical, Optical, Fluidic ...

MEMS Relay Background

- Mechanical relay: Ron-state ≈0, Roff-state ≈ ∞
- Solid state relay: batch process, IC integration
- MEMS relay can have both advantages
- Signal relay vs. power relay
- Jo-ey Wong's relay: vertical motion, electrostatic actuation, monostable, one contact

Cross section view

Development Logic

Relay Configuration

Device and FEA Movies

Curved Beam Modal Analysis

Curved Beam F- D Curves

Bistable Double Beam

- Center clamp
 [Vangbo] constraints
 twisting mode
- Double beam bistable, single beam mono-stable
- *l*=4 mm, t=12 um, h=72 um, total force near 2nd stable position 5.7mN

Snap-Through Movie

 $100 \ \mu m$

11

Transient Thermal Actuator

- >10 mN, >100 μ m required, thermal actuator selected
- Selective metal coating to create resistance difference
- In transient, hot beam has uniform temp., cold beam has zero temp
- Thermal expansion difference creates lateral tip motion
- Design requirement: blocked force, free displacement
- One beam to push the relay on, the other one to pull it back

Mechanical Models

Comparison and Design

- Complete model agrees with FEA anytime
- Basic model less adequate with higher expansion and lower th/tc
- Basic model can quickly get design, which can be verified/improved by complete model
- For actuation of 13 mN,120
 μm: Design T_{rise}=220 C, *l*=6
 mm, t_h=80 μm, t_c=60 μm, t_g=20
 μm, b=300 μm

Thermal and Electrical Design

- Diffusion $l(time) \approx \sqrt{\frac{\text{Conductance}}{\text{Capacitance}}} time$ •
- With 1 ms pulse the 6 mm actuator undergoes a thermal transient
- Mechanical time constant << 1 ms
- Cold beam tip becomes hot. Trise=220 C to avoid Au-Si eutectic reaction
- Thermal relaxation time ~0.4 s

- Electrical pulse of 1ms generated by external circuit
- Wafer resistivity determines electrical actuation. 0.02 Ω -cm wafer requires 50V, 1A
- 0.5 μm Au on cold beam provides 1/10 Resistance of hot beam

Fabricated Relay Chart

Year	Wafer # Mask#	Asher	Oxide	Handle wafer	Metalization	Bottom etch	Anneal	
01	Tt M2	No	No	Si	Ebeam 0.3um	No	No	100Ω
01	G1 M3	No	No	Si	Ebeam 0.3um	No	No	
01	G2 M3	No	No	Si	Ebeam 0.3um	No	No	
01	G3 M3	No	No	Si	Ebeam 0.3um	No	No	
01	G4 M5	No	No	Si	Ebeam 0.3um	No	No	
01	G5 M6	Yes	Yes	Pyrex	Sputter 0.9um	No	No	
01	G6 M7	Yes	Yes	Pyrex	Sputter 0.9um	Yes	No	
02	G7 M8	Yes	Yes	Pyrex	Ebeam 0.3um	Yes	No	
02	G8x M8	Yes	Yes	Pyrex	Ebeam 0.3um	Yes	No	
02	G9 M8	Yes	Yes	Pyrex	Ebeam 0.3um	Yes	No	
02	G10 M10	Yes	No	Pyrex	Sputter Au	Yes	No	_
02	G11 M10	Yes	No	Pyrex	Sputter Au Plate Au	Yes	No	
02	G12 M10	Yes	No	Pyrex	Sputter Au Plate Cu	Yes	No	
02	G13 M11	Yes	No	Pyrex	Sputter Au Plate Cu	Yes	No	
02	G14 M12	Yes	No	Pyrex	Sputter Au Plate Au	Yes	No	♥
02	G15 M12	Yes	No	Pyrex	Sputter Au plate	Yes	Both	010
03	G16 M13	Yes	No	Pyrex	Cu Sputter Cu	Yes	Both	

0.1 Ω

Contact Compliance, Shape

- Cantilever beam improves f-d curve
- Compliance also balances forces on two contacts
- Flat crossbar and contacts provide the best contact
- Fabrication tolerance is now less critical

Bottom-of-Etch-Problem Solution

Backside etch method

Fabrication Flow

Measured Performance

Contact:

- Force ≈1 mN/contact, manual pressing doesn't decrease Resistance
- R_{on-state} = 60-180 mΩ,
 On-state current carrying capacity = 2-3A
- R_{off-state} ≈ ∞, stands off > 200V

Switching:

- Actuation pulse: 1 ms
- Bounce: 1-5 times
- Switch-on settle time: 2 ms
- Voltage = 50-60V, 85V
- Stroke = $120 \,\mu m$
- Max frequency = 5Hz

Contributions

Development of a MEMS relay

- Design and modeling of a curved beam bistable mechanism
- Design and modeling of a transient thermal actuator
- Design and modeling of relay contact compliance
- Identification of the ideal shape of relay contact
- Process development to metalize sidewall relay contact
- Process development to alleviate bottom-of-etch problem of DRIE through-etched structure

Acknowledgements

- Research advisors: Prof. Jeffrey Lang, Prof. Alexander Slocum
- Discussion: Prof. Martin Schmidt, Dr. Ralf Strumpler, Jian Li, Joachim Sihler
- Fabrication & testing assistance: Kurt Broderick, Dr. Vicky Diadiuk, Gwen Donahue, Ramkumar Krishnan, Chris Spadaccini, Paul Tierney, Dennis Ward
- Sponsor: ABB

f-d Curve Measurement

Displacement(um)

- Beam thickness profile, <10 μm mask value
- Measured by flextester
- f-d theory for cubic average thick beam agrees with measurement

Thermal Measurement

time=0-66 ms

time=264-330 ms time=442-508 ms

- Images taken by IR camera
- Low time, spatial, and temperature accuracy
- Cool down time agrees with model
- Measured energy to heat up agrees with theory within 20%

Switch-on Measurement

- Actuation time 1 ms
- Voltage just enough to switch
- Snap-through time ~ 50 μs
- Contact bounces 1-5 times
- Time from actuation to good contact 1.5-2.5 ms

Curved Beam Modal Analysis

Buckling of a straight beam with initial stress

Hard to control initial stress in bulk fabrication...

How about a curved beam etched as shape w_1 pushed by f at the center? (1) Normalization: F-force, Δ -center displacement, N^2 -axial force, $N_{1,2,3}^2$,mode axial force, Q-ratio of curved beam height and thickness, W-Beam shape, \overline{W} -as-etched shape, $A_{1,2,3}$ -mode amplitudes (2) Write the shape by buckling modes:

$$\overline{W}(X) = \frac{1}{2}W_1(X), W(X) = \sum_{j=1}^{3} A_j W_j(X), \Delta = 1 - 2A_1.$$

(3) Variation (Total structural energy) = 0

result #1:
$$A_1 = -\frac{N_1^2}{2(N^2 - N_1^2)} + \frac{4F}{N_1^2(N^2 - N_1^2)}$$
.

result #2: $\begin{cases} \left(N^2 - N_2^2\right) A_2 = 0\\ \left(N^2 - N_3^2\right) A_3 = 0 \end{cases}$, which implies three kinds of solutions, $\begin{cases} N^2 = ?, A_2 = A_3 = 0\\ A_1 = ?, \\ F = F_1 \end{cases}$, $\begin{cases} N^2 = N_2^2, A_3 = 0\\ A_1 = ?, A_2 = ? \\ F = F_2 \end{cases}$, $\begin{cases} N^2 = N_3^2, A_2 = 0\\ A_1 = ?, A_3 = ? \\ F = F_3 \end{cases}$

(4) Hooke's Law, $\frac{N_1^2}{16} - \sum_{j=1,2,3} \frac{A_j^2 N_j^2}{4} = \frac{N^2}{12Q^2}$

(5) F- Δ curves obtained from equations above